834 research outputs found

    Modeling oil palm monoculture and its associated impacts on land-atmosphere carbon, water and energy fluxes in Indonesia

    Get PDF
    In dieser Studie wird ein neues Modul “CLM-Palm” fĂŒr mehrjĂ€hrige Nutzpflanzen zur Modellierung einer funktionellen Gruppe (plant functional type) fĂŒr Ölpalmen im Rahmen des Community Land Models (CLM4.5) entwickelt, um die Auswirkungen der Transformation eines tropischen Waldes in eine Ölpalmenplantage auf die Kohlenstoff-, Wasser- und EnergieflĂŒsse zwischen Land und AtmosphĂ€re zu quantifizieren. Um die Morphologie der Ölpalme möglichst detailgetreu darzustellen (das heißt, dass ungefĂ€hr 40 Phytomere einen mehrschichtigen Kronenraum formen), wird in dem Modul CLM-Palm eine phĂ€nologische und  physiologische Parametrisierung auf Skalen unterhalb des Kronraums eingefĂŒhrt, so dass jedem Phytomer sein eigenes prognostisches Blattwachstum und seine ErntekapazitĂ€t zugeordnet wird, wĂ€hrend Stamm und Wurzeln gemeinsam genutzt werden. Das Modul CLM-Palm wurde ausschließlich fĂŒr Ölpalmen getestet, ist aber auch fĂŒr andere Palmarten (z. B. Kokospalmen) interessant.  Im ersten Kapitel dieser Arbeit werden Hintergrund und Motivation dieser Arbeit vorgestellt. In Kapitel 2 wird die Entwicklung des Haupt- bzw. Kernmodells beschrieben,  inklusive PhĂ€nologie und Allokationsfunktionen zur Simulation des Wachstums und des Ertrags der Palme PFT, wodurch die Basis zur Modellierung  der biophysikalischen und biogeochemicalischen KreislĂ€ufe innerhalb dieser Monokultur bereitgestellt wird. Die neuen Parameter fĂŒr die PhĂ€nologie und die Allokation wurden sorgfĂ€ltig mit Feldmessungen des BlattflĂ€chenindexes (LAI), des Ertrags und der NettoprimĂ€rproduktion (NPP) verschiedener Ölpalmenplantagen auf Sumatra (Indonesien) kalibriert und validiert. Die Validierung zeigte die Eignung von CLM-Palm zur adĂ€quaten Vorhersage des mittleren Blattwachstums und Ertrags fĂŒr verschiedene Standorte und reprĂ€sentiert in ausreichendem Maß die signifikante VariabilitĂ€t bezĂŒglich des Stickstoffs und Alters von Standort zu Standort.  In Kapitel 3 wird die weitere Modellentwicklung und die Implementierung eines Norman-Mehrschichtmodells fĂŒr den Strahlungstransport vorgestellt, das an den  mehrschichtigen Kronenraum der Ölpalme angepasst ist. Dieses Norman-Mehrschichtmodell des Strahlungstransports zeigte im Vergleich zu dem in CLM4.5 implementierten Standardmodell (basierend auf großen BlĂ€ttern) bei der Simulation der Licht-Photosynthese-Kurve leichte Verbesserungen und hat  lediglich marginale Vorteile gegenĂŒber dem ebenfalls in CLM4.5 implementierten alternativen statistischen Mehrschichtmodell.  Dennoch liefert das Norman-Modell eine detailliertere und realistischere ReprĂ€sentation des Belaubungszustands wie etwa dem dynamischen LAI, der Blattwinkelverteilung in verschiedenen Höhen, und ein ausgewogeneres Profil der absorbierten photosynthetisch aktiven Strahlung (PAR). Die Validierung mit Hilfe der Eddy-Kovarianz Flussdaten zeigte die StĂ€rke von CLM-Palm bei der Simulation der KohlenstoffflĂŒsse, offenbarte aber auch Abweichungen in der simulierten Evapotranspiration (ET), dem sensiblen und dem latenten WĂ€rmefluss (H und LE). Eine Reihe von hydrologischen Messungen im Kronenraum wird in Kapitel 4 beschrieben. Dies beinhaltet eine Adaption des in CLM4.5 eingebauten Standardmodells fĂŒr Niederschlag, Interzeption und Speicherfunktionen fĂŒr die speziellen Merkmale eines Ölpalmen-Kronenraums. Die ĂŒberarbeitete Hydrologie des Kronenraums behob die Probleme bei der Simulation der WasserflĂŒsse (ET und Transpiration im Kronenraum) und verbesserte die Energieaufteilung zwischen H und LE. Kapitel 5 dokumentiert die Implementierung eines neuen dynamischen Modells fĂŒr Stickstoff (nitrogen, N) in CLM-Palm zur Verbesserung der Simulation der C- und N-Dynamik, insbesondere mit Bezug auf den N-DĂŒngeeffekte in landwirtschaftlich genutzten Systemen. Das dynamische N-Modell durchbricht die Limitierung des Standardmodells in CLM4.5, mit fixierter C-N-Stöchiometrie und erlaubt die Variation des C:N-VerhĂ€ltnisses in lebendem Gewebe in AbhĂ€ngigkeit der N-VerfĂŒgbarkeit und dem N-Bedarf der Pflanze.  Eine Reihe von Tests bezĂŒglich der DĂŒngung zeigte beispielhaft die Vorteile des dynamischen N-Modells, wie zum Beispiel die Verbesserung des Netto-Ökosystemaustauschs (net ecosystem exchange, NEE), ein realistischeres C:N-VerhĂ€ltnis im Blatt, eine verbesserte ReprĂ€sentation der Effizienz des Stickstoffeinsatzes (nitrogen-use efficiency, NUE), sowie der Effekte von DĂŒngung auf Wachstum und Ertrag. Abschließend wird in Kapitel 6 eine Anwendungsstudie gezeigt, in der die zentralen Modellentwicklungen aus den vorangegangenen Kapiteln verwendet werden. Eine junge und eine  erntereife Ölpalmenplantage sowie ein PrimĂ€rregenwald wurden simuliert und verglichen. Sie wiesen klare Unterschiede in den C-FlĂŒssen und in den biophysikalischen Merkmalen (z.B. ET und OberflĂ€chentemperatur) auf. Ölpalmenplantagen können durch Wachstumsentwicklung (im Alter von etwa 4 Jahren)  ebenso hohe und darĂŒber hinausgehende C-Assimilation und Wassernutzungsraten erreichen wie RegenwĂ€lder, haben jedoch im Allgemeinen eine höhere OberflĂ€chentemperatur als eine bewaldete FlĂ€che – dies gilt auch fĂŒr erntereife Plantagen. Eine Simulation des Übergangs, die zwei Rotationsperioden mit Neubepflanzungen alle 25 Jahre umspannt, zeigte dass der Anbau von Ölpalmen auf lĂ€ngeren Zeitskalen lediglich in etwa die HĂ€lfte des ursprĂŒnglichen C-Speichers der bewaldeten FlĂ€che vor dem Kahlschlag  rĂŒckspeichern kann. Das im Boden gespeicherte C nimmt in einer bewirtschafteten Plantage aufgrund des begrenzten StreurĂŒcklaufs langsam und graduell ab. Insgesamt reduziert die Umwandlung eines Regenwaldes in eine Ölpalmenplantage die langfristigen C-Speicher und die KapazitĂ€t der FlĂ€che zur C-Sequestrierung und trĂ€gt potentiell zur ErwĂ€rmung der LandoberflĂ€che bei – trotz des schnellen Wachstums und der hohen C-Assimilationsrate einer stark gedĂŒngten Plantage. Zur EinschĂ€tzung der regionalen und globalen Effekte der Ausbreitung der Kultivierung von Ölpalmen auf die Austauschprozesse zwischen Land und AtmosphĂ€re und auf das Klima ist es notwendig eine Upscaling-Studie durchzufĂŒhren

    Carbon sequestration potential of street tree plantings in Helsinki

    Get PDF
    Cities have become increasingly interested in reducing their greenhouse gas emissions and increasing carbon sequestration and storage in urban vegetation and soil as part of their climate mitigation actions. However, most of our knowledge of the biogenic carbon cycle is based on data and models from forested ecosystems, despite urban nature and microclimates differing greatly from those in natural or forested ecosystems. There is a need for modelling tools that can correctly consider temporal variations in the urban carbon cycle and take specific urban conditions into account. The main aims of our study were to (1) examine the carbon sequestration potential of two commonly used street tree species (Tilia x vulgaris and Alnus glutinosa) growing in three different growing media by taking into account the complexity of urban conditions and (2) evaluate the urban land surface model SUEWS (Surface Urban Energy and Water Balance Scheme) and the soil carbon model Yassol5 in simulating the carbon sequestration of these street tree plantings at temporal scales (diurnal, monthly, and annual). SUEWS provides data on the urban microclimate and on street tree photosynthesis and respiration, whereas soil carbon storage is estimated with Yasso. These models were used to study the urban carbon cycle throughout the expected lifespan of street trees (2002-2031). Within this period, model performances were evaluated against transpiration estimated from sap flow, soil carbon content, and soil moisture measurements from two street tree sites located in Helsinki, Finland. The models were able to capture the variability in the urban carbon cycle and transpiration due to changes in environmental conditions, soil type, and tree species. Carbon sequestration potential was estimated for an average street tree and for the average of the diverse soils present in the study area. Over the study period, soil respiration dominated carbon exchange over carbon sequestration due to the high initial carbon loss from the soil after street construction. However, the street tree plantings turned into a modest sink of carbon from the atmosphere on an annual scale, as tree and soil respiration approximately balanced the photosynthesis. The compensation point when street tree plantings turned from an annual source into a sink was reached more rapidly - after 12 years - by Alnus trees, while this point was reached by Tilia trees after 14 years. However, these moments naturally vary from site to site depending on the growing media, planting density, tree species, and climate. Overall, the results indicate the importance of soil in urban carbon sequestration estimations.Peer reviewe

    Net ecosystem exchange of carbon dioxide and water of far eastern Siberian Larch (Larix cajanderii) on permafrost.

    Get PDF
    Observations of the net ecosystem exchange of water and CO<sub>2</sub> were made during two seasons in 2000 and 2001 above a Larch forest in Far East Siberia (Yakutsk). The measurements were obtained by eddy correlation. There is a very sharply pronounced growing season of 100 days when the forest is leaved. Maximum half hourly uptake rates are 18 &micro;mol m<sup>-2</sup> s<sup>-1</sup>; maximum respiration rates are 5 &micro;mol m<sup>-2</sup> s<sup>-1</sup>. Net annual sequestration of carbon was estimated at 160 gCm<sup>-2</sup> in 2001. Applying no correction for low friction velocities added 60 g C m<sup>-2</sup>. The net carbon exchange of the forest was extremely sensitive to small changes in weather that may switch the forest easily from a sink to a source, even in summer. June was the month with highest uptake in 2001. <P style='line-height: 20px;'> The average evaporation rate of the forest approached 1.46 mm day<sup>-1</sup> during the growing season, with peak values of 3 mm day<sup>-1</sup> with an estimated annual evaporation of 213 mm, closely approaching the average annual rainfall amount. 2001 was a drier year than 2000 and this is reflected in lower evaporation rates in 2001 than in 2000. <P style='line-height: 20px;'> The surface conductance of the forest shows a marked response to increasing atmospheric humidity deficits. This affects the CO<sub>2</sub> uptake and evaporation in a different manner, with the CO<sub>2</sub> uptake being more affected. There appears to be no change in the relation between surface conductance and net ecosystem uptake normalized by the atmospheric humidity deficit at the monthly time scale. The response to atmospheric humidity deficit is an efficient mechanism to prevent severe water loss during the short intense growing season. The associated cost to the sequestration of carbon may be another explanation for the slow growth of these forests in this environment

    Understanding of Coupled Terrestrial Carbon, Nitrogen and Water Dynamics—An Overview

    Get PDF
    Coupled terrestrial carbon (C), nitrogen (N) and hydrological processes play a crucial role in the climate system, providing both positive and negative feedbacks to climate change. In this review we summarize published research results to gain an increased understanding of the dynamics between vegetation and atmosphere processes. A variety of methods, including monitoring (e.g., eddy covariance flux tower, remote sensing, etc.) and modeling (i.e., ecosystem, hydrology and atmospheric inversion modeling) the terrestrial carbon and water budgeting, are evaluated and compared. We highlight two major research areas where additional research could be focused: (i) Conceptually, the hydrological and biogeochemical processes are closely linked, however, the coupling processes between terrestrial C, N and hydrological processes are far from well understood; and (ii) there are significant uncertainties in estimates of the components of the C balance, especially at landscape and regional scales. To address these two questions, a synthetic research framework is needed which includes both bottom-up and top-down approaches integrating scalable (footprint and ecosystem) models and a spatially nested hierarchy of observations which include multispectral remote sensing, inventories, existing regional clusters of eddy-covariance flux towers and CO2 mixing ratio towers and chambers

    Decadal water balance of a temperate Scots pine forest (Pinus sylvestris L.) based on measurements and modelling

    Get PDF
    We examined the water balance components of an 80-year-old Scots pine (Pinus sylvestris L.) forest stand in the Campine region of Belgium over a ten year period using five very different approaches; our methods ranged from data intensive measurements to process model simulations. Specifically, we used the conservative ion method (CI), the Eddy Covariance technique (EC), an empirical model (WATBAL), and two process models that vary greatly in their temporal and spatial scaling, the ORCHIDEE global land-surface model and SECRETS a stand- to ecosystem-scale biogeochemical process model. Herein we used the EC technique as a standard for the evapotranspiration (ET) estimates. Using and evaluating process based models with data is extremely useful as models are the primary method for integration of small-scale, process level phenomena into comprehensive description of forest stand or ecosystem function. Results demonstrated that the two process models corresponded well to the seasonal patterns and yearly totals of ET from the EC approach. However, both WATBAL and CI approaches overestimated ET when compared to the EC estimates. We found significant relationships between several meteorological variables (i.e., vapour pressure deficit [VPD], mean air temperature [Tair], and global radiation [Rg]) and ET on monthly basis for all approaches. In contrast, few relationships were significant on annual basis. Independent of the method examined, ET exhibited low inter-annual variability. Consequently, drainage fluxes were highly correlated with annual precipitation for all approaches examined, except CI

    Modeling whole-tree carbon assimilation rate using observed transpiration rates and needle sugar carbon isotope ratios

    Get PDF
    ‱ Understanding controls over plant–atmosphere CO2 exchange is important for quantifying carbon budgets across a range of spatial and temporal scales. In this study, we used a simple approach to estimate whole-tree CO2 assimilation rate (ATree) in a subalpine forest ecosystem. ‱ We analysed the carbon isotope ratio (ή13C) of extracted needle sugars and combined it with the daytime leaf-to-air vapor pressure deficit to estimate tree water-use efficiency (WUE). The estimated WUE was then combined with observations of tree transpiration rate (E) using sap flow techniques to estimate ATree. Estimates of ATree for the three dominant tree species in the forest were combined with species distribution and tree size to estimate and gross primary productivity (GPP) using an ecosystem process model. ‱ A sensitivity analysis showed that estimates of ATree were more sensitive to dynamics in E than ή13C. At the ecosystem scale, the abundance of lodgepole pine trees influenced seasonal dynamics in GPP considerably more than Engelmann spruce and subalpine fir because of its greater sensitivity of E to seasonal climate variation. ‱ The results provide the framework for a nondestructive method for estimating whole-tree carbon assimilation rate and ecosystem GPP over daily-to weekly time scales

    Carbon fluxes in a mature deciduous forest under elevated CO₂

    Get PDF
    This PhD thesis addressed several major aspects of the carbon (C) cycle in a c. 100-year-old, mixed deciduous forest under elevated CO₂ with an emphasis on below-ground processes. The aim was to assess the responses of tree fine roots and soil respiration to canopy CO₂ enrichment (? 550 ppm) in this tallest forest studied to date. Furthermore, leaf gas-exchange of the five study species was examined to ascertain the long-term response of photosynthetic carbon uptake to elevated atmospheric CO₂. Investigations at the Swiss Canopy Crane (SCC) experimental site were guided by the following key questions: (1) Does below-ground C allocation to fine root production increase in response to CO₂ enrichment in order to acquire more nutrients to match the enhanced C supply in the forest canopy? (2) Is below-ground metabolism enhanced and therefore forest soil respiration stimulated by canopy CO₂ enrichment? (3) Is leaf-level photosynthesis persistently stimulated by elevated CO₂ in this stand or had these mature broad-leaved trees reduced their carbon up- take by photosynthetic down-regulation under long-term CO₂ enrichment? Findings from earlier studies at the SCC site, including 13C isotope tracing, all point towards an in- creased flux of C through CO₂-enriched trees to the soil but neither fine root biomass nor soil respiration were stimulated by elevated CO₂. Surprisingly, fine root biomass in bulk soil and ingrowth cores showed strong reductions by ? 30% in year five and six but were unaffected in the following seventh year of CO₂ enrichment. Given the absence of a positive biomass response of fine roots, we assumed that the extra C assimilated in the CO₂-enriched forest canopy was largely respired back to the atmosphere via increases in fine root and rhizosphere respiration and the metabolization of increased root derived exudates by soil microbes. Indeed, 52% higher soil air CO₂ concentration during the growing season and 14% greater soil microbial biomass both in- dicated enhanced below-ground metabolism in soil under CO₂-enriched trees. However, this did not translate into a persistent stimulation of soil respiration. At times of high or continuous precipitation soil water savings under CO₂-exposed trees (resulting from reduced sapflow) led to excessive soil moisture (> 45 vol.-%) impeding soil gas-exchange and thus soil respiration. Depending on the interplay between soil temperature and the consistently high soil water content in this stand, instantaneous rates of soil respiration were periodically reduced or increased under elevated CO₂ but on a diel scale and integrated over the growing season soil CO₂ emissions were similar under CO₂-enriched and control trees. Soil respiration could therefore not explain the fate of the extra C. The lacking sink capacity for additional assimilates led us to assume downward adjustment of photosynthetic capacity in CO₂-enriched trees thereby reducing carbon uptake in the forest canopy. Photosynthetic acclimation cannot completely eliminate the CO₂-driven stimulation in carbon uptake, but a reduction could hamper the detection of a CO₂ effect considering the low statistical power inevitably involved with such large-scale experiments. However, after eight years of CO₂ enrichment we found sustained stimulation in leaf photosynthesis (42-49%) indicating a lack of closure in the carbon budget for this stand under elevated atmospheric CO₂

    Carbon dynamics and management in Canadian boreal forests : triplex-flux model development, validation, and applications

    Get PDF
    La forĂȘt borĂ©ale, seconde aire biotique terrestre sur Terre, est actuellement considĂ©rĂ©e comme un rĂ©servoir important de carbone pour l'atmosphĂšre. Les modĂšles basĂ©s sur le processus des Ă©cosystĂšmes terrestres jouent un rĂŽle important dans l'Ă©cologie terrestre et dans la gestion des ressources naturelles. Cette thĂšse examine le dĂ©veloppement, la validation et l'application aux pratiques de gestion des forĂȘts d'un tel modĂšle. Tout d'abord, le module rĂ©cemment dĂ©veloppĂ© d'Ă©change du carbone TRIPLEX-Flux (avec des intervalles de temps d'une demi heure) est utilisĂ© pour simuler les Ă©changes de carbone des Ă©cosystĂšmes d'une forĂȘt au peuplement borĂ©al et mixte de 75 ans dans le nord est de l'Ontario, d'une forĂȘt avec un peuplement d'Ă©pinette noire de 110 ans localisĂ©e dans le sud de Saskatchewan, et d'une forĂȘt avec un peuplement d'Ă©pinette noire de 160 ans situĂ©e au nord du Manitoba au Canada. Les rĂ©sultats des Ă©changes nets de l'Ă©cosystĂšme (ENE) simulĂ©s par TRIPLEX-Flux sur l'annĂ©e 2004 sont comparĂ©s Ă  ceux mesurĂ©s par les "tours de mesures de covariance des turbulences" et montrent une bonne correspondance gĂ©nĂ©rale entre les simulations du modĂšle et les observations de terrain. Le coefficient de dĂ©termination moyen (R2) est approximativement de 0.77 pour le peuplement mixte borĂ©al, et de 0.62 et 0.65 pour les deux forĂȘts d'Ă©pinette noire situĂ©es au centre du Canada. Le modĂšle est capable d'intĂ©grer les variations diurnes de l'Ă©change net de l'Ă©cosystĂšme (ENE) de la pĂ©riode de pousse (de mai Ă  aoĂ»t) de 2004 sur les trois sites. Le peuplement borĂ©al mixte ainsi que les peuplements d'Ă©pinette noire agissaient tous deux comme des rĂ©servoirs de carbone pour l'atmosphĂšre durant la pĂ©riode de pousse de 2004. Cependant le peuplement borĂ©al mixte montre une plus grande productivitĂ© de l'Ă©cosystĂšme, un plus grand piĂ©geage du carbone ainsi qu'un meilleur taux de carbone utilisĂ© comparĂ© aux peuplements d'Ă©pinette noire. L'analyse de la sensibilitĂ© a mis en Ă©vidence une diffĂ©rence de sensibilitĂ© entre le matin et le milieu de journĂ©e, ainsi qu'entre une concentration habituelle et une concentration doublĂ©e de CO2. De plus, la comparaison de diffĂ©rents algorithmes pour calculer la conductance stomatale a montrĂ© que la production nette de l'Ă©cosystĂšme (PNE) modĂ©lisĂ©e, utilisant une itĂ©ration d'algorithme est conforme avec les rĂ©sultats utilisant des rapports Ci/Ca constants de 0.74 et de 0.81 respectivement pour les concentrations courantes et doublĂ©es de CO2. Une variation des paramĂštres et des donnĂ©es variables de plus ou moins 10% a entrainĂ©, respectivement pour les concentrations courantes et doublĂ©es de CO2, une rĂ©ponse du modĂšle infĂ©rieure ou Ă©gale Ă  27.6% et Ă  27.4%. La plupart des paramĂštres sont plus sensibles en milieu de journĂ©e que le matin exceptĂ© pour ceux en lien avec la tempĂ©rature de l'air, ce qui suggĂšre que la tempĂ©rature a des effets considĂ©rables sur la sensibilitĂ© du modĂšle pour ces paramĂštres/variables. L'effet de la tempĂ©rature de l'air Ă©tait plus important dans une atmosphĂšre dont la concentration de CO2 Ă©tait doublĂ©e. En revanche, la sensibilitĂ© du modĂšle au CO2 qui diminuait lorsque la concentration de CO2 Ă©tait doublĂ©e. \ud Sachant que, les incertitudes de prĂ©diction des modĂšles proviennent majoritairement des hĂ©tĂ©rogĂ©nĂ©itĂ©s spatio-temporelles au cƓur des Ă©cosystĂšmes terrestres, Ă  la suite du dĂ©veloppement du modĂšle et de l'analyse de sa sensibilitĂ©, sept sites forestiers Ă  tour de mesures de flux (comportant trois forĂȘts Ă  feuilles caduques, trois forĂȘts tempĂ©rĂ©es Ă  feuillage persistant et une forĂȘt borĂ©ale Ă  feuillage persistant) ont Ă©tĂ© sĂ©lectionnĂ©s pour faciliter la comprĂ©hension des variations mensuelles des paramĂštres du modĂšle. La mĂ©thode de Monte Carlo par Markov Chain (MCMC) Ă  Ă©tĂ© appliquĂ©e pour estimer les paramĂštres clefs de la sensibilitĂ© dans le modĂšle basĂ© sur le processus de l'Ă©cosystĂšme, TRIPLEX-Flux. Les quatre paramĂštres clefs sĂ©lectionnĂ©s comportent: un taux maximum de carboxylation photosynthĂ©tique Ă  25°C (Vmax), un taux du transport d'un Ă©lectron (Jmax) saturĂ© en lumiĂšre lors du cycle photosynthĂ©tique de rĂ©duction du carbone, un coefficient de conductance stomatale (m), et un taux de rĂ©fĂ©rence de respiration Ă  10°C (R10). Les mesures de covariance des flux turbulents du CO2 Ă©changĂ© ont Ă©tĂ© assimilĂ©es afin d'optimiser les paramĂštres pour tous les mois de l'annĂ©e 2006. AprĂšs que l'optimisation et l'ajustement des paramĂštres ait Ă©tĂ© rĂ©alisĂ©e, la prĂ©diction de la production nette de l'Ă©cosystĂšme s'est amĂ©liorĂ©e significativement (d'environ 25%) en comparaison avec les mesures de flux de CO2 rĂ©alisĂ©s sur les sept sites d'Ă©cosystĂšmes forestiers. Les rĂ©sultats suggĂšrent, dans le respect des paramĂštres sĂ©lectionnĂ©s, qu'une variabilitĂ© plus importante se produit dans les forĂȘts Ă  feuilles larges que dans les forĂȘts d'arbres Ă  aiguilles. De plus, les rĂ©sultats montrent que l'approche par la fusion des donnĂ©es du modĂšle incorporant la mĂ©thode MCMC peut ĂȘtre utilisĂ©e pour estimer les paramĂštres basĂ©s sur les mesures de flux, et que des paramĂštres saisonniers optimisĂ©s peuvent considĂ©rablement amĂ©liorer la prĂ©cision d'un modĂšle d'Ă©cosystĂšme lors de la simulation de sa productivitĂ© nette et cela pour diffĂ©rents Ă©cosystĂšmes forestiers situĂ©s Ă  travers l'AmĂ©rique du Nord. Finalement, quelques uns de ces paramĂštres et algorithmes testĂ©s ont Ă©tĂ© utilisĂ©s pour mettre Ă  jour l'ancienne version de TRIPLEX comportant des intervalles de temps mensuels. En outre, le volume d'un peuplement et la quantitĂ© de carbone de la biomasse au dessus du sol des forĂȘts d'Ă©pinette noire au QuĂ©bec sont simulĂ©s en relation avec un peuplement des Ăąges, cela Ă  des fins de gestion forestiĂšre. Ce modĂšle a Ă©tĂ© validĂ© en utilisant Ă  la fois une tour de mesure de flux et des donnĂ©es d'un inventaire forestier. Les simulations se sont avĂ©rĂ©es rĂ©ussies. Les corrĂ©lations entre les donnĂ©es observĂ©es et les donnĂ©es simulĂ©es (R2) Ă©taient de 0.94, 0.93 et 0.71 respectivement pour le diamĂštre Ă  l.3 m, la moyenne de la hauteur du peuplement et la productivitĂ© nette de l'Ă©cosystĂšme. En se basant sur les rĂ©sultats Ă  long terme de la simulation, il est possible de dĂ©terminer l'Ăąge de maturitĂ© du carbone du peuplement considĂ©rĂ© comme prenant place Ă  l'Ă©poque oĂč le peuplement de la forĂȘt prĂ©lĂšve le maximum de carbone, avant que la rĂ©colte finale ne soit rĂ©alisĂ©e. AprĂšs avoir comparĂ© l'Ăąge de maturitĂ© du volume des peuplements considĂ©rĂ©s (d'environ 65 ans) et l'Ăąge de maturitĂ© du carbone des peuplements considĂ©rĂ©s (d'environ 85 ans), les rĂ©sultats suggĂšrent que la rĂ©colte d'un mĂȘme peuplement Ă  son Ăąge de maturitĂ© de volume est prĂ©maturĂ©. DĂ©caler la rĂ©colte d'environ vingt ans et permettre au peuplement considĂ©rĂ© d'atteindre l'Ăąge auquel sa maturitĂ© du carbone prend place, mĂšnera Ă  la formation d'un rĂ©servoir potentiellement important de carbone. Aussi, un nouveau diagramme de la gestion de la densitĂ© du carbone du peuplement considĂ©rĂ©, basĂ© sur les rĂ©sultats de la simulation, a Ă©tĂ© dĂ©veloppĂ© pour dĂ©montrer quantitativement les relations entre les densitĂ©s de peuplement, le volume de peuplement et la quantitĂ© de carbone de la biomasse au dessus du sol Ă  des stades de dĂ©veloppement variĂ©s, dans le but d'Ă©tablir des rĂ©gimes de gestion de la densitĂ© optimaux pour le rendement de volume et le stockage du carbone. \ud ______________________________________________________________________________ \ud MOTS-CLÉS DE L’AUTEUR : Ă©cosystĂšme forestier, flux de CO2, production nette de l'Ă©cosystĂšme, eddy covariance, TRIPLEX-Flux module, validation d'un modĂšle, Markov Chain Monte Carlo, estimation des paramĂštres, assimilation des donnĂ©es, maturitĂ© du carbone, diagramme de gestion de la densitĂ© de peuplemen
    • 

    corecore